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Gate Sizing for Constrained
Delay/Power/Area Optimization

Olivier Coudert

Abstract— Gate sizing has a significant impact on the de-
lay, power dissipation, and area of the final circuit. It con-
sists of choosing for each node of a mapped circuit a gate
implementation in the library so that a cost function is op-
timized under some constraints. For instance, one wants to
minimize the power consumption and/or the area of a cir-
cuit under some user-defined delay constraints, or to obtain
the fastest circuit within a given power budget. Although
this technology-dependent optimization has been investi-
gated for years, the proposed approaches sometimes rely
on assumptions, cost models, or algorithms that make them
unrealistic or impossible to apply on real-life large circuits.
We discusse here a gate sizing algorithm (GS), and show
how it is used to achieve constrained optimization. It can
be applied on large circuits within a reasonable CPU time,
e.g., minimizing the power of a 10000 nodes circuit under
some delay constraint in 2 hours.

Keywords—Gate sizing, discrete constrained optimization,
delay/power/area tradeoff

I. Introduction

From the practical point of view, gate sizing consists of
optimizing the power and/or area under some delay con-
straints, or optimizing the delay possibly under some power
and/or area constraints. The constraints can also include
library-specific design rules, such as maximum fanout load
or maximum transition time.

People have studied gate sizing since the late 70’s [27],
[17]. Using a RC delay model [24], the delay and the
area are expressed with posynomials1, as is it done in
TILOS [10]. Geometric programming or heuristics based
greedy approaches can be used to solve such a posynomial
formulation [10], [30], [29]. Linear programming is used
in [2] thanks to a piecewise linear delay model. A con-
vex programming formulation based on pseudo-posynomial
is presented in [29], and is solved using an interior point
method. Gate sizing has been formulated as a convex pro-
gramming problem [29], and solved using an interior point
method. Gate sizing has also been formulated as non-linear
programming in [4], [14], [18], and solved with Lagrangian
multipliers [26, pp. 60–74] [16], [9], [12]. Analytical de-
lay/power/area models or continuous resizing have been
used in [27], [15], [29], [3] to avoid facing the combinatorial
explosion, or to fill the lack of first and second derivatives.

These approaches suffer from problems that make them
difficult or unrealistic to be applied on real-life circuits
with a discrete size library: (1) some methods cannot take
into account a delay constraint, which is not acceptable
for industrial designs; (2) some methods make crude as-
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1A posynomial is a polynomial with possibly negative exponent,
e.g., x2 + 3x− 1/x+ 8/x3

sumptions on the optimality criterion, e.g., assuming that
minimizing a weighted power and delay product is the
best power/delay tradeoff, while the problem is about con-
strained optimization; (3) the cost models, especially for
delay and power, are not realistic, or are over-simplified to
fit a specialized optimization technique; (4) some methods
continuously size the gates, with the idea of solving an eas-
ier problem and then projecting the continuous solution on
a discrete solution. But projective methods does not nec-
essarily yield a feasible solution (i.e., which meets the given
constraints); (5) some methods assume that the objective
function and/or the feasible region is convex, which does
not hold with accurate delay and power model; (6) some
methods are too CPU costly to be applied on circuits with
more than 1000 gates.
This paper addresses gate sizing as defined above. With

the accurate delay model, this makes gate sizing a non-
linear, non-convex, constrained, discrete, optimization
problem. Experiences show that it is not even unimodal,
i.e., many local extrema exist. A first concern, addressed
in Section 2, is the cost models used for delay, power, and
area: how accurate are they, and how CPU expensive are
they to evaluate and update? Section 3 presents a con-
straint free delay optimizer built on top of GS, a gate sizing
based general purpose optimizer [5]. Section 4 shows how
power optimization under delay constraints is done with
GS. Finally, Section 5 presents and discusses experimen-
tal data, and shows in particular that GS exhibits better
performances than the widely used greedy approach.

II. Cost Models

We shortly present here the models used to evaluate the
area, power, and delay of a circuit. We also discuss how
costly updating these measures is when a local modification
(e.g., resizing a gate) is applied on a circuit.

A. Area

Since the area of each gate is known, and the wire and
routing area can be statistically estimated from the charac-
teristics of the circuit, the area A of the mapped circuit can
be accurately estimated. Updating the area after resizing
is straightforward.

B. Delay

The most accurate delay estimation is a simulation from
differential equations, e.g., with SPICE. However it is too
much CPU expensive. Fig. 1 illustrates a more abstract,
still accurate, delay model. The time t needed for a sig-
nal to propagate from the inputs of a gate to the inputs of
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Fig. 1. Input slope and output load sensitive delay model.

the next gate is t = tp + to + tc, where tp is the propaga-
tion time inside the gate, to is the output transition time,
and tc is the connection time spent in the wire. The delay
t depends on the output load C, and on the input tran-
sition time ti (the input transition time of a gate is the
output transition time of its fanin gates). The reader is
referred to [1], [32], [25], [21], [28], [19] for the presentation
of some delay models. A study of different input transi-
tion time sensitive delay models shows that a table lookup
approach is more accurate than multi-coefficient (linear,
polynomial, or posynomial) approximations [19]. A table
lookup based non-linear interpolation delay model is within
3% of SPICE, while 2 or 3-coefficient linear delay models
can be off by as much as 20% from SPICE. We use such an
accurate table lookup based non-linear delay model.

The designer specifies delay constraints between any two
points of the circuit. Typically, he specifies the arrival time
of the primary inputs and the required time of the primary
outputs. Given a point n of the circuit, its arrival time

AT (n) is the time at which the signal is propagated from
the primary inputs to n, and its required time RT (n) is the
time at which the signal must arrive to meet point-to-point
delay constraints. Arrival and required times are defined
for both rising and falling signals. They are computed by a
forward and backward traversal of the circuit. The slack S

of n is defined as S (n) = RT (n)−AT (n). The set of points
that have the minimal slack value is the critical path of the
circuit, i.e., the slowest topological path. If the smallest
slack is non negative, the delay constraints are met. The
reader is referred to [8, pp. 225–289] for more details on
delay computation, path sensitization, and false paths.

Sizing a gate affects the output load of its fanin gates,
and the input transition time of its fanout gates. Conse-
quently, the propagation times and transition times of its
fanin gates and of its transitive fanout gates need to be
recomputed. Moreover, resizing a gate can change the sen-
sitivity of the paths, and therefore affects the slack of all
the gates. In short, a single sizing can require a delay re-
evaluation of the whole circuit, which is fairly expensive,
even using incremental delay recomputation.

C. Power

The power P dissipated in a gate is:

P = Pload + Pinternal + Pleakage .

The term Pload , the net dynamic power, is due to the charg-
ing and discharging of the output load of the gate. It de-
pends on the toggle rate (number of transitions per unit of
time) of the output net, and on the output load C. The
term Pinternal , the internal gate dynamic power, depends
on the toggle rates, on the input transition time, and on
the internal loads. The term Pleakage , the static leakage
power, represents the static power dissipation in CMOS
devices due to the leakage current. The toggle rates can
be evaluated with expensive but accurate gate-level simu-
lators [23], [7], or with fast but less accurate probabilistic
methods [13], [7]. It is still difficult to take into account
spatial and temporal correlation between the logical sig-
nals when dealing with sequential circuit [20], [31], [22].
The reader is referred to [23] for an overview on power
estimation.
The toggle rate depends on how the signals propagate

in the circuit. In particular, resizing a gate affects the
glitches, i.e., the transitions due to signal races between two
clock ticks. Measuring the glitches requires an event-driven
simulation and an explicit knowledge of the inputs’ wave-
forms. The later hypothesis is not realistic, and updating
the amount of glitching with an event-driven simulation is
far too costly. Thus we neglect the power dissipation due
to glitching, and use a zero-delay model simulation to com-
pute the toggle rates only once. In that case, updating the
power after resizing is done efficiently.

III. Constraint Free Optimization

We now introduce GS, a general purpose gate sizing
based optimization procedure [5]. We first show how con-
straint free optimization is done. We will show in the next
section how GS is used for constrained optimization.

A. GS: General Purpose Optimization

Let us call amove a single gate resizing, which consists of
replacing a node’s gate g0 with an equivalent gate g1. Let
us denote ∆Cost (call “gradient”) the variation Cost1 −
Cost0 of some cost function Cost produced by this move.
As said in Section II, computing ∆A is straightforward.

It is also the case for ∆P if one neglects second order com-
ponents. On the other hand, computing ∆S can require
a delay re-evaluation of the whole circuit. However, while
a move can affect the slack of every nodes, its effect on
the slack gradients decreases quickly in practice, approxi-
matively geometrically by fanin and fanout level. For in-
stance, a move that produces a slack variation of 1 on a
node modifies the gradients of the immediate fanout gates
of an order of 0.1, and of an order of 0.01 in the second level
of fanout, etc. This enables us to use two heuristics:

(a) Instead of evaluating the gradient of a node node

within the whole circuit, which is too computation-
ally expensive in an iterative algorithm, we evaluate it
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function GS (circuit ,Cost ,Fitness)
update = all the nodes of circuit ;
moves = Ø;
loop {

old cost = Cost(circuit);
foreach node ∈ update {

Extract subcircuit N around node;
node.move = 0;
node.fit = Fitness(N);
foreach other gate g implementing node {

fit = Fitness(N [node ← g]);
if (fit > node.fit) {

node.move = g;
node.fit = fit ;

}
}
if (node.move 6= 0) {

moves = moves ∪ {node};
} else {

moves = moves − {node};
}

}
moved = ApplyMultiMove(circuit ,Cost ,moves);
update = PerturbedNodes(circuit ,moved);

} until Converge(old cost ,Cost(circuit),moved);

Fig. 2. The GS algorithm.

within a subcircuit N extracted around node, made of
one or two transitive levels of fanin and fanout;
(b) After some moves has been performed, the gradient
of a node node is re-computed only if node has been
sufficiently perturbed, i.e., if one of its close neighbors
has been resized.

We thus have a much cheaper gradient evaluation, and we
avoid recomputing the gradients all the time. This CPU
time vs. accuracy tradeoff has been experimentally vali-
dated.

Fig. 2 shows the gate resizing algorithm GS, which drives
a circuit circuit to a local minimum of a cost function
Cost . GS uses a fitness function Fitness to grade moves,
the greater, the better. A good choice for constraint free
optimization consist of taking −∆Cost as the fitness func-
tion, since it picks the move that decreases Cost the most
on a subcircuit. The set update contains the nodes whose
fitness needs to be computed, and moves is the set of pos-
sible moves. For every node of update, the best fitness
node.fit and its associated move node.move is computed
w.r.t Fitness , using a subcircuit for the evaluation, as ex-
plained in (a). Then the function ApplyMultiMove takes
the set moves of all candidate moves and determines a mul-

tiple move made of the maximal ordered subset of moves

that minimizes Cost . This can be done in several way:
along the descent direction [9]; by conjugation of direc-
tions [9]; by looking at the maximal subset of moves that
minimizes Cost . The set moved of nodes that have actu-
ally been resized is returned, from which PerturbedNodes

function MaximizeSlack(circuit , S);
best slack = −∞;
GS (circuit ,−S,∆S);
while S(circuit) > best slack {

best slack = S(circuit);
best solution = GatesOf (circuit);
GS (circuit ,−TS ,∆TS );
GS (circuit ,−S,∆S);

}
GatesOf (circuit) = best solution;

Fig. 3. Delay optimization.

derives the new set of nodes whose fitness needs to be re-
computed for the next iteration, as explained in (b). This
process is iterated until some convergence criterion is met.

B. Constraint Free Delay Optimization

The problem here consists of maximizing the smallest
slack of the design. The sensitivity of circuit’s delay to re-
sizing motivates a global optimization process as opposed
to a local greedy search. Also delay optimization can en-
counter several local extrema because of the non-convexity
of the delay model, which motivates a method that avoids
suboptimal solution.
Let S(circuit) be the smallest slack in the circuit circuit ,

and TS (circuit) be the sum of the slacks of all its nodes.
Fig. 3 shows the delay optimization procedure. An opti-
mization and a perturbation step are iterated until no more
improvement is found. The optimization step consists of
maximizing the slack. The perturbation step is used to get
out of the local minimum and look for another, potentially
better, local minimum, and is indeed another optimization
step, namely maximizing TS . Its effect is to globally speed
up every nodes, so that the conflicts between the critical
paths are relaxed , and the next maximization of S(circuit)
can achieve a better result2.

GS cannot guarantee the optimality of the result since
the cost function is not unimodal. To validate GS, we com-
pared it with a greedy approach and three other non-linear
optimization techniques [6]. This comparison shows that
GS consistently beats the other methods for a comparable
or smaller CPU time.

IV. Delay Constrained Power Optimization

We now show how delay constrained power optimization
is done with GS. Delay constrained area optimization is
done in a similar way. Delay optimization under a power
constraint can be done using a dichotomous search based
on delay constrained power optimization, which shrinks a
delay interval solution until it is small enough.
Fig. 4 illustrates three constrained optimization tech-

niques. Each figure shows a delay constraint as a vertical
line that separates the feasible region (on the left) from

2We tried several perturbation functions, e.g., guarded randomiza-
tion, (un)guarded sum of outputs’ slacks maximization, but none of
them were as good as maximizing TS(circuit).
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Fig. 4. Ping-pong, penalty function, and relaxation based constrained optimization.

the infeasible region (on the right, in gray). The optimal
circuit, i.e., the circuit that minimizes the power consump-
tion and meets the delay constraint is the intersection of
this line with the optimal power/delay curve. The goal is
to find a trajectory that drives an initial configuration to
the optimal configuration.

Ping-ponging goes back and forth from the infeasible to
the feasible region. First, one drives the circuit to the fea-
sible region. Then, one minimizes the power with a loose
delay constraint. This procedure is iterated and the de-
lay constraint is made tighter at each iteration until it be-
comes the required delay constraint. One problem is how to
tighten the delay constraint to obtain good quality results.
Overall, although effective, ping-ponging is too much CPU
time consuming, and so can be applied on small circuit only
(< 500 nodes).

A penalty function based optimization method consists
of adding to the objective function a penalty term penalty ,
which measures how much the constraints are violated. It
is zero in the feasible region, and becomes greater when
one goes deeper in the infeasible region. One iterates the
minimization of P + penalty , and sharpen penalty at each
iteration. The dashed curves in Fig. 4 show the penalty
functions of the first four iterations. This constrained opti-
mization method is very effective. However, it is also very
difficult to tune (i.e., determining the penalty functions),
and is too CPU intensive to be applied on large circuits.

We have chosen a relaxation method, illustrated on the
right of Fig. 4. It consists of first, minimizing the constraint
(i.e., maximizing the slack S), and then relaxing slowly the
configuration within the feasible region. Fig. 5 shows the
corresponding procedure. First, the delay is optimized3.
Second, one minimizes the power P while enforcing the
delay constraints by minimizing Pcns defined as:

Pcns(circuit) =

{

+∞ if S(circuit) < 0
P otherwise.

The fitness function Relax is:

Relax = ǫ if ∆P > 0 or S0 +∆S < 0

Relax = (ǫ− α∆P ) · φ(
∆S

ǫ+ S0
), where

3If the delay constraints cannot be met, they are restated so that
the power is optimized for the best found delay.

function MinimizePowerUnderDelayCns(circuit , S);
MaximizeSlack(circuit , S);
GS (circuit ,Pcns ,Relax );

Fig. 5. Power optimization under delay constraints.
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Fig. 6. Relaxation vs. Greedy

φ(x) =

{

1 + x if x ≥ 0
1

1−x
otherwise.

In this formulation, S0 is the current slack of the node
under inspection. The small constant ǫ and the normal-
ization constant α are precomputed according to the char-
acteristics of the initial circuit. Relax balances the gain
in power with a delay dependent function φ that acts as a
benefit/penalty function. It takes into account how much
power and slack is won or lost, and on how critical the node
is. Fig. 7 shows how the fitness evolves w.r.t ∆P and ∆S

for more and more critical nodes (i.e., for S0 decreasing to
zero).
This optimization method is based on two ideas. (1)

Optimizing the delay gives plenty of alternatives for power
optimization, i.e., going far away from the infeasible region
makes power minimization less likely to be trapped in a
local minimum. (2) The power optimization is done within
the feasible region by relaxing the delay constraints using
a penalty/benefit function, as opposed for instance to a
greedy method that resizes as many non-critical nodes as
possible to their minimal power. Such a greedy method
can give low quality results for the following reason: resiz-
ing a few nodes to their local minimal power too “quickly”
creates critical paths that prevent most of the other nodes
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Fig. 7. From left to right, fitness for more and more delay critical nodes.

from being resized and saving more power. Fig. 6 illustrates
this behavior. Greedy targets a minimum power configura-
tion without taking into account how tight the constraint
is, until its trajectory eventually hits the delay constraint
line and gets stuck at this point, which can be far from the
optimal configuration.

V. Experimental Results

We first compared GS to a greedy approach on 92 circuits
mapped for delay. Table I shows some of these circuits, and
summarizes the results obtained for delay optimization. GS
found a better delay than greedy on 86 examples. The
%availability measure is defined as follows. The available
improvement is the difference between the initial delay and
the best delay found by any algorithm. Algorithms earn a
score based on how much of that available improvement
they find, e.g., an algorithm that achieves all of the im-
provement on a circuit is awarded a 100%, and 0% if it
does not find any improvement. %availability is the av-
erage of these scores over the 92 examples. Not only GS
beats out the greedy approach, but also it is overall faster,
especially when the circuit is large (> 3000 nodes).

We then let GS and a greedy approach optimize the
power for different delay constraints, starting from a cir-
cuit in an optimal delay configuration. Fig. 8 shows some
of the resulting optimal power/delay curves. It clearly
demonstrates that a greedy approach can get stuck in a
local minimal far from the optimal point, as explained in
Section 5. Not only greedy is trapped in local minimums,
but is also very dependent on the starting point: some of
the curves produced by the greedy approach are locally
increasing, and exhibit chaotic behaviors. Overall, GS’s
optimal power/delay curve is always better than greedy’s
one. The difference ranges typically between 1% and 7.5%,
on average 5.2%, and is over 25% for some examples. GS
beats out greedy for a CPU time only 10% larger.

Under a delay constraint equal to the initial delay, GS
achieves a power saving of 11% on average, up to more than
30% on some large examples mapped on a rich library. The
average CPU time is 1400 seconds for a 3400 nodes circuit,
to be compared with an order of 1400 seconds for a 800
nodes circuit in [10], an order of 30000 seconds for a 800
nodes circuit in [29], and an order of 45000 seconds for a

TABLE II

Power optimization under delay constraints.

Circuit.lib nodes ave %P CPU

C3540.cbc7 hd 757 3.723 11.4% 80
C3540.ibm m5l 850 7.681 31.8% 276
pair.ibm m5l 1349 7.652 27.9% 248
C7552.ibm m5l 1377 6.691 20.4% 328
C7552.cbc7 hd 1505 4.412 7.1% 118
des.cbc7 hd 2579 3.943 8.5% 510
des.ibm m5l 2789 7.042 30.5% 1523
sgi flat.cb60hd230d 3995 3.799 13.3% 162
bobbie.lca300k 4575 5.181 5.3% 205
F642925.cbc7 hd 11447 4.497 7.8% 5793
tandem.cmos cba 15061 4.315 13.4% 8622
tandem.cb60hd230d 16128 3.858 13.1% 7514
tandem.ibm m5l 16181 7.907 57.3% 9242

%P is the power saving due to gate sizing. The CPU time is
in seconds on a 60 MHz SuperSparc (85.4 SpecInt).

1300 nodes circuit [11]. As shown by Table II, GS optimizes
the power of fairly large circuits in a reasonable CPU time.

VI. Conclusion

Gate sizing is a technology dependent optimization that
affects the quality of the final circuit. However, many of
the approaches that have been explored are limited by
the assumptions they rely on, or by the size of the cir-
cuit. We have presented GS, a general purpose gate re-
sizing based optimization method. GS trades fitness accu-
racy against CPU time, which makes it possible to apply
on large circuits. We have shown how constrained opti-
mization, for example power minimization under delay con-
straint, is achieved with GS, using perturbations, multiple
moves, and relaxations techniques, as opposed to single-
move greedy approaches. This method produces better
quality results on large circuits within a reasonable CPU
time.
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Fig. 8. Optimal power/delay produced by GS and greedy.
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